
 

 EURASIA Journal of Mathematics, Science and Technology Education, 2024, 20(3), em2414 

  ISSN:1305-8223 (online) 

 OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/14321 
 

 

 

© 2024 by the authors; licensee Modestum. This article is an open access article distributed under the terms and conditions of 

the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). 

 jablonski@math.uni-frankfurt.de (*Correspondence) 

Challenges in geometric modelling–A comparison of students’ 
mathematization with real objects, photos, and 3D models   

Simone Jablonski 1*  

1 Goethe University Frankfurt, Frankfurt, GERMANY 

Received 12 October 2023 ▪ Accepted 07 February 2024 

 

Abstract 

Mathematical modelling aims at contributing to the involvement of reality in mathematics 

education. As an example, geometric modelling can be implemented by the use of real objects in 

modelling tasks. Still, (geometric) modelling tasks can be a challenge for students, especially in 

the transfer from reality to mathematics, which is referred to as mathematization. Since the 

representation of a real object in tasks might differ, the question arises, which challenges can be 

observed when working in different task settings. In a study with 19 secondary school students, 

the task settings (1) outdoors at the real object, (2) indoors with photos of the real object, and (3) 

indoors with a 3D model of the real object are compared. Based on video recordings, differences 

concerning the students’ challenges are examined. The results highlight challenges in estimating 

and measuring when working at the real object, scale and perspective when working with photos 

and the transfer between representation and object when working with 3D models. 

Keywords: geometric modelling, mathematizing, reality, tasks, contexts 

 

INTRODUCTION 

Mathematical modelling aims at integrating real-life 
situations and objects into mathematics classes. Doerr et 
al. (2017) describe the relevance of mathematical models 
in different disciplines as one of the reasons why 
modelling competencies nowadays are part of 
mathematics education curricula on an international 
level (see also Schukajlow et al., 2015). In addition, 
modelling in mathematics education can support 
students in understanding the relevance and application 
of mathematics in everyday life (cf. Blum & Leiss, 2007) 
and in the scope of possible future professional practices 
(cf. Hernandez-Martinez & Vos, 2018). By looking at 
modelling tasks from different mathematics disciplines, 
several potentials for the development and training of 
mathematical thinking and acting can be recognized, 
too: Tasks require, for instance, discrete mathematics 
(e.g., Greefrath et al., 2022), algebraic structures (e.g., 
Ramírez-Montes et al., 2021) or geometric skills (e.g., 

 

 A preliminary analysis of data concerning mathematical modelling was published in journal “Educational Studies in 
Mathematics” in March 2023. This paper extends this focus by providing a detailed analysis of encountered challenges. The 
theoretical consideration as well as data analysis from this different contextual point of view is being reported for first time here. 

Zapata-Grajales et al., 2018). The latter, in particular, will 
be addressed in this article.  

Reality provides numerous examples in which 
geometry can be discovered in the scope of mathematical 
modelling, such as buildings, which can be described by 
using plane and shape geometry. Hereby, 
approximation is required since most real objects are not 
perfect mathematical solids. The way in which real 
objects can be included in modelling tasks differs, e.g., 
by using different representations or the object itself (cf. 
Buchholtz, 2021; Jablonski, 2023). This distinction in 
representation is referred to as a task setting in the 
following.  

Despite the high relevance of modelling, research 
results show that students encounter problems with 
open character and reference to reality of modelling 
tasks (cf. Blum, 2015). Even though, the number of 
identified challenges and obstacles is high, less is known 
about the role of particular challenges in relation to the 
task setting. This article aims at a comparison of 
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observed challenges during mathematical modelling 
processes in the following three settings  

(1) outdoors at the real object,  

(2) indoors by means of photographs, or  

(3) indoors by means of a 3D model.  

Based on a preliminary analysis and observation 
(Jablonski, 2023), it is hypothesized that students 
encounter different challenges when working on 
modelling tasks in these three settings. Hereby, a special 
focus will be placed on challenges during 
mathematization processes.  

THEORETICAL BACKGROUND: 
MATHEMATICAL MODELLING IN 
GEOMETRY 

Geometry finds its origin in the environment: 
Deriving from the Greek, the word originally means 
“land survey” (Hwang et al., 2020). A lot has happened 
since then. Especially with the introduction of geometry 
into mathematics lessons, its purely practical application 
in the sense of measuring has receded partially into the 
background (cf. Jablonski & Ludwig, 2023). 
Nevertheless, a mathematical perception of the 
environment is reflected as a designated goal of 
geometry teaching alongside a scientific and problem-
oriented focus. Real objects in particular play a role here:  

“One example is when learners are instructed 
about angle concepts during geometry class and 
apply new knowledge to the real world by solving 
real-life problems in surrounding contexts outside 
of school, for example, they measure the angles of 
objects they see on their way home from school 
(Crompton, 2015)” (Hwang et al., 2020, p. 1124).  

Hereby, “the geometry ability is developed in the 
practice of our life and has significance in humans 
learning and daily life” (Zhao et al., 2018, p. 1). In the 
active engagement with reality, a strong potential for 
spatial ability is seen in the sense that real objects are 
converted into mental images and used to recognize 
shapes and sizes (Zhao et al., 2018).  

In addition, geometry questions from reality show 
potential for mathematical modelling, too: As pointed 
out, reality provides several examples of geometric 
phenomena. However, it is rarely the one geometric 

object that describes its shape or symmetry perfectly. 
Approximating reality with geometric solids and shapes 
requires simplifications and structuring (How can reality 
be simplified to narrow it down to a mathematical solid?), as 
well as mathematization (What data are needed, available 
and important for the usage of a mathematical model?). All 
these activities can be found in the modelling cycle by 
Blum and Leiss (2007). Based on this cycle, Buchholtz 
(2021) provides an adapted cycle for outdoor modelling 
tasks at real objects (cf. Figure 1). An outdoor modelling 
task contains a mathematical question being linked to 
real objects. The task process happens directly on-site of 
the object and requires mathematical activities such as 
measuring (cf. Ludwig & Jesberg, 2015). 

Buchholtz (2021) particularly puts emphasis on 
contextualized mathematization and contextualized 
validation. According to him, the steps of structuring 
and mathematizing on the one hand and the validation 
process on the other hand happen in the context of the 
real object. In contrast to the general cycle for 
mathematical modelling, the context of the object plays 
a major role and the data collection at the object is 
emphasized as a separate step. In the following, the 
focus will be laid on the stages being related to 
contextualized mathematization here. 

Even though the adapted modelling cycle mainly 
focuses on outdoor modelling tasks, with the 
involvement of real objects, geometry modelling tasks 
related to real objects can be introduced in different 
ways. A commonly used example is the introduction of 
real objects through photos of the object brought to the 

Contribution to the literature 

• This article focuses on different modelling settings involving real objects and introduces different 
representations in the context of geometry. 

• The article extends the comparison of different modelling settings to the perspective of challenges that 
students encounter when solving tasks in different settings. 

• The results show differences in the observed challenges and thus implications for research and practice in 
the context of challenges in geometric modelling tasks can be drawn. 

 
Figure 1. Adapted modelling cycle for tasks at real objects 
(Buchholtz, 2021, p. 145) 
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classroom (e.g., Hartmann & Schukajlow, 2021). Hereby, 
one or more photos of the real object are provided, 
sometimes together with an object of reference since 
usually no data is given. In terms of object-related 
mathematization, students are requested to do 
estimations based on the photos and, in the case of an 
originally 3D object, make assumptions about 
perspective. Further attempts in geometry modelling are 
based on the development of 3D modelling and printing 
(e.g., Anđić et al., 2024), which enables a scaled 3D 
version of a real object (cf. Jablonski, 2023).  

The following conclusion can be drawn: Geometry 
seems to be a relevant aspect for mathematical modelling 
in relation to reality and vice versa. On the one hand, the 
solution of modelling problems related to reality 
requires geometry knowledge. On the other hand, 
geometry can be discovered in reality and allows 
interesting questions in the scope of mathematical 
modelling. The relation between modelling and 
geometry seems to contribute to both the general aims of 
geometry teaching and learning and the enhancement of 
mathematical modelling. Therefore, the relevance to 
involve geometry modelling tasks in mathematics 
classes is evident.  

Still despite this importance, the special character of 
reality-based tasks can be challenging for students. 
“Ignore the context, just extract all data from the text and 
calculate something according to a familiar schema” 
(Blum, 2015, p. 79): Potential difficulties students may 
encounter in solving modelling tasks can lead to such 
“fall back” strategies–also in the context of geometry. 
The number of difficulties is high since “every single 
arrow in the modelling cycle represents a demanding 
process […] The processes are demanding in different 
ways and depend on the specifics of the situation” 
(Jankvist & Niss, 2019). In the scope of contextualized 
mathematization, the choice and selection of relevant 
data seems to be an obstacle (cf. Schukajlow et al., 2023). 
In the state of the art, the focus is laid on findings 
concerning secondary school students’ challenges in 
mathematical modelling and in particular 
mathematization by reporting on the stages object-related 
planning and data collection (cf. Buchholtz, 2021). Further, 
it takes the role of different task settings involving real 
objects and their potential specifics against the 
background of geometric questions into consideration. 

STATE OF THE ART: CHALLENGES IN 
MATHEMATIZING (REPRESENTATIONS 
OF) REAL OBJECTS 

Schukajlow et al. (2023) describe modelling tasks 
with missing data as modelling problems with an open 
initial state and highlight the challenges to “structure, 
simplify, and idealize the given situation. As these 
activities occur at the beginning of the modelling 
process, it is crucial to overcome barriers in these 

activities in order to develop am meaningful solution.” 
(p. 419). This subdivision is based on a study with fifth 
graders from which the barriers noticing missing 
information, gathering unknown data and making realistic 
assumptions emerge (Krawitz et al., 2018).  

In terms of the first two barriers, Stillman et al. (2013) 
report from an empirical study with secondary school 
students that a main obstacle for them is the 
management of an open task as well as gathering 
information and data. These tasks usually require the 
acquisition of missing information by different forms of 
data collection, e.g., measurements and estimations. In 
the context of measuring, Gurjanow and Ludwig (2020) 
analyze obstacles during secondary school students’ 
data collection processes by means of measurements. 
The authors identify the use of measuring tools to gather 
data and the conversion of units as learning barriers that 
occur when students take measurements at real objects. 
Estimating, in general, is described as a “unidimensional 
construct” with varying difficulty depending on the 
objects’ size and accessibility (i.e., touchable or not) 
(Hoth et al., 2022, p. 1861).  

Buchholtz (2017) describes autonomous 
mathematization with a particular focus on real-world 
contexts as a challenge, especially in making 
assumptions. This observation is therefore linked to the 
third barrier identified by Krawitz et al. (2018). Making 
assumptions is taken into consideration as being 
“difficult for students and a potential reason why they 
fail in solving modelling problems” (Chang et al., 2019, 
p. 61). Chang et al. (2019) divide assumptions into non-
numerical (based on extra-mathematical knowledge) and 
numerical (about missing quantities) assumptions, 
whereby the latter is hypothesized as more difficult since 
“estimation skills and strategies such as the reference 
point strategy” are needed (p. 61). A close connection to 
the previously description of data collection is seen here.  

Even though there are numerous attempts to support 
and enrich modelling by digital technologies (e.g., 
Greefrath et al., 2018), a review study by Cevikbas et al. 
(2023) shows that, depending on how the tools are used, 
they “might obscure the meaning behind calculations 
and mathematicians in modelling approaches […] 
learners may focus solely on a certain approach to the 
modelling process and may not be aware of different 
ways to solve tasks.” (p. 12).  

Despite a focus on general challenges in 
mathematizing, first research attempts focusing on 
different settings of mathematical modelling are evident, 
as well. Especially the role of photos is examined in these 
works (Hartmann & Schukajlow, 2021) with a focus on 
potential barriers in terms of interpreting perspective 
(Schukajlow, 2013). In the context of the study further 
described in this article, activities in the modelling steps 
simplifying and structuring as well as mathematizing have 
already been examined (cf. Jablonski, 2023). The 
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comparison of students working at the real object, with 
photos or a 3D model shows that the real object setting 
is dominated by taking measurements and discussions 
on how to measure available data (cf. Buchholtz, 2021). 
When working with photos, students place more 
emphasis on estimating and justifying perspective 
assumptions. For the work with a 3D model, students’ 
work is focused on assumptions about scaling.  

From these findings, it can be hypothesized that 
different task settings place different demands on 
students in terms of object-related planning and data 
collection, e.g., measuring, estimating, and perspective-
taking. Thus, it is likely that students encounter different 
challenges in the task settings. Building on this 
hypothesis, the aim of this research is to investigate the 
challenges that students encounter during 
contextualized mathematization in different task 
settings and enrich previous research findings through 
this perspective. To do so, the following research 
question is formulated:  

Which challenges in contextualized mathematization can 
be observed when students work on modelling tasks in the task 
settings real object, photos and 3D model? 

METHODOLOGY 

To answer the research question, a study with 19 
students in grade 6-grade 8 in 2022 was conducted. At 
the time of the survey, the students attended an 
enrichment program to promote mathematical 
giftedness. This sample was used because it could be 
assumed that the students would engage with new task 
settings and solve them with the necessary willingness 
to exert effort so that a full comparison of each setting 
would be possible. The students were divided into six 
groups.  

For the study, mathematical modelling was linked to 
questions on geometric objects from the daily 
environment. For each of these objects the following 
three representations as tasks were generated: 
photographs of the objects, 3D models of the objects 
brought to the classroom, and real objects in the daily 
environment. For the photo setting, a 1.75 m tall person 
was placed next to/in front of the objects. For the 3D 
model setting, the objects were scanned and scaled so 
that a LEGO figure besides the object would represent a 
1.75 m tall person. The models were created by 3D print. 

Each group worked on three tasks in the three chosen 
modelling settings. In the Body of Knowledge task, 
students were asked to determine the height of the 
sculpture, representing a sitting person, if it would stand 
up (see part a in Figure 2). In the Stone task (see part b in 
Figure 2), the students should determine the Stone’s 
volume. The Rotazione sculpture task (see part c in Figure 

2) was to determine its surface. Three different task 
settings were defined for each of the objects:  

1. Outdoors at the real object: The students solved the 
task outside directly at the real object. They had a 
folding ruler with them (see part a in Figure 2), 

2. Indoors with photos: The students solved the task 
using a series of photos of the real object with a 
person as a possible reference. In addition to the 
photos, students had a ruler for measuring sizes 
(see part b in Figure 2). 

3. Indoors with 3D model: To solve the task, the 
students were given a 3D representation of the 
real object, which had previously been printed to 
scale. A LEGO figure and a ruler were provided 
as a reference size and for measurement (see part 
c in Figure 2). 

To ensure that each group worked on each object and 
in each setting exactly once, the objects and settings were 
arranged systematically in Latin Square Design (LSD) 
(Field, 2016; see Table 1).  

LSD involves to nine different pairs of setting and 
object. With six groups solving three tasks each, each 
pair of setting and object was experienced by exactly two 
groups. This leads to a total of 18 task solution processes 
with six solution processes per task and six solution 
processes per setting each. While solving the tasks, the 
student groups were filmed. The video interactions 
during all 18 solution processes are the basis for an 
analysis concerning the following variables for both the 
solution process and product: 

1. Modelling step: The processes were coded 
deductively according to the stage definitions of 
Buchholtz (2021): Contextualized 
mathematization, mathematical work and 
contextualized validation. The scenes categorized 
in the first stage were taken into consideration for 
the following step of data analysis. 

 
Figure 2. (a) Task: Body of Knowledge–Setting: Outdoors at 
the real object; (b) Task: Stone–Setting: Indoors with photos; 
& (c) Task: Rotazione– Setting: Indoors with 3D model 
(Photos taken by the author) 

Table 1. Group arrangement according to LSD 

Groups Body of Knowledge Stone Rotazione  

A & D Photo 3D model Real object 
C & F Real object Photo 3D model 
B & E 3D model Real object Photo 
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2. Challenges: In addition, an inductive, qualitative 
content analysis according to Mayring (2000) was 
used to extract the challenges that occurred 
during the contextualized mathematization. 
Hereby, a challenge was defined by means of the 
following cases: 

a. Internal challenge: The group encounters a 
problem in their mathematizing for which they 
do not have a plan ready to be used (cf. 
problem-solving). It goes along with 
uncertainty, the explicit mentioning of the 
problem and/or the lack of agreement by the 
whole group concerning mathematization.  

b. External challenge: The group follows a 
mathematization strategy that is inadequate, 
unrealistic or leads to an incorrect result. In 
contrast to the first challenge-type, the 
students do not show any kind of awareness 
hereof.  

3. Time on task/mathematization: Afterwards, the time 
on task for each group as well as the time needed 
for mathematization was taken into consideration. 

4. Solution quality: Finally, the quality of the achieved 
result was analyzed. For this purpose, solution 
intervals for each task were created in advance, 
based on multiple solution processes by means of 
different models. 

RESULTS 

The presentation of the results starts by giving an 
overview of the achieved results and the groups’ time on 
task in the respective setting and object (cf. Table 2; cf. 
Jablonski, 2023). On average, the groups need 13:40 

minutes to solve a task at the real object, 14:30 minutes 
to solve a task with photos and 13:25 minutes to solve a 
task with a 3D model. Concerning the different task 
objects, the groups need about 14:30 minutes to solve the 
Body of Knowledge task, 12:50 minutes to solve to Stone 
task and 17 minutes to solve the Rotazione sculpture task. 
Of their total time on task, the groups spend about 64% 
(real object), 62% (photos), and 60% (3D model) in the 
contextualized mathematization.  

The solution quality for the real object setting can be 
summarized, as follows: Three results (one for the 
Rotazione sculpture and two for the Stone) can be 
evaluated as correctly solved. The two results for the 
Body of Knowledge underestimate the result and one 
solution for the Rotazione sculpture exceeds the interval. 
For the photo setting, all achieved results underestimate 
the defined solution interval. In the work with the 3D 
model, students underestimated the height of the Body of 
Knowledge and the volume of the Stone in one case. All 
remaining results fit in the solution interval. 

Table 3, in addition, gives an overview of the 
observed challenges. They derive from the coding 
process of those scenes being related to contextualized 
mathematization (cf. Buchholtz, 2021). They are 
distinguished according to the related stages object-
related planning and data collection. The challenges are 
ordered in their quantity (number of groups that 
encountered the challenge in the particular setting).  

The challenges being linked to object-related planning 
can be organized, as follows: Three of the six groups 
have problems in identifying important and unimportant 
data and information in the photo setting, whereas it only 
plays a minor role in the observation of the other 
settings. For example, one group wants to determine the 

Table 2. Groups’ results & duration needed sorted by object & setting (cf. Jablonski, 2023) 

 Body of Knowledge Stone Rotazione 

Real object 17.4 m/06:20 min  
15.4 m/19:30 min 

6.4 m³/11:20 min  
6.2 m³/06:30 min 

29.8 m²/19:30 min  
21.6 m²/07:00 min 

Photos 11.5 m/25:40 min  
10.5 m/15:20 min 

2.6 m³/14:20 min  
3.1 m³/14:30 min 

14.1 m²/14:30 min  
11.0 m²/08:40 min 

3D model 16.9 m /13:40 min  
17.0 m/13:10 min 

4.2 m³/24:00 min  
5.3 m³/10:10 min 

21.6 m²/20:30 min  
23.8 m³/28:40 min 

Solution interval [18-22 m] [5-9 m³] [17-26 m²] 
 

Table 3. Challenges during contextualized mathematization (cf. Buchholtz, 2021) in settings real object (RO), photos (P), & 
3D model (3D) 

Challenge Stage 
Quantity 

RO P 3D 

Problems in identifying important/unimportant data Object-related planning 1 3 1 

Problems in finding a unified strategy for structuring 3 0 2 

Problems in recognizing perspective 0 4 0 

Problems in understanding link between representation & object 0 0 4 

Inaccurate estimations Data collection 3 2 1 

Inaccurate measurements/measurement errors 3 2 1 

Errors in scale calculations 0 1 4 

Problems in estimating/using reference person 0 2 2 
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volume of the reference person given in the photo to 
determine the volume of the Stone. In addition, problems 
in recognizing perspective is a challenge only observed in 
the photo setting. During the work with a 3D model, four 
of the six groups have problems in understanding the link 
between the representation and the real object. One group 
attempts to stop the modelling task after calculating the 
size of the Body of Knowledge’s 3D model representation 
without seeing that it is only material for calculating the 
real size. Problems in finding a unified strategy for 
structuring the process, i.e., students being unable to agree 
on a common strategy and start multiple processes 
simultaneously, are observed in the real object and 3D 
model setting.  

Analyzing the challenges being related to data 
collection, it can be observed that inaccurate estimations 
and measurements occur in all three settings with a focus 
on the real object setting. This is especially the case when 
estimating the height of the Body of Knowledge and the 
Rotazione sculpture, which are too high to be measured 
directly. Errors in scale calculations as well as problems in 
estimating/using the reference person are only relevant in 
the 3D model and photo setting, whereas the first is 
dominant in the 3D model and the latter is relevant for 
two groups in both settings. Problems in scale 
calculations can be focused on the handling of scale in 
terms of area and volume, e.g., one group estimates the 
scale factor to determine the surface of the Rotazione 
sculpture with the 3D model but multiplies the area of 
the object’s representation only once by the scale factor.  

In terms of an outlook concerning the identified 
challenges, possible relations between the challenges 
encountered and the time on task, respectively solution 
quality are identified. Therefore, the number of different 
problems in the groups (in total, in object-related 
planning and in data collection) is correlated with their 
time on task and the result quality. Table 4 presents 
these results. Hereby, all 18 solution processes are 
equally taken into consideration without distinguishing 
different settings since the number of cases would be too 
small. Still, with the previously identified differences 

between the settings, possible relations will be taken into 
consideration in the discussion. 

According to Gilpin (1993), values for Kendall’s tau τ 
above 0.330 can be related to values for Pearsons’s r 
exceeding 0.500, which marks a medium effect. With this 
interpretation, for the 18 task processes, a medium 
correlation is obtained between the total number of 
encountered challenges (respectively the number of 
encountered challenges in planning) and the time on 
task with Kendall’s tau τ=0.546 (and τ=0.670). For the 
number of challenges encountered in the data collection 
and the time on task, Kendall’s tau τ=0.335 can be 
reported, assuming that a bigger sample size might lead 
to significance, too. Concerning correlations with 
solution quality, no remarkable effects can be reported. 

DISCUSSION & CONCLUSIONS 

In order to answer the question of which challenges 
in contextualized mathematization can be observed 
when students work on modelling tasks in different 
settings, a study with 19 secondary school students was 
conducted. By means of 18 solution processes in six 
groups, the three different modelling settings outdoors 
at the real object, indoors with photos and indoors with 
3D models were compared concerning the occurrence of 
challenges. The focus was laid on contextualized 
mathematization with its components object-related 
planning and data collection since a relation to the work 
with real objects (and their representations) was seen 
particularly here. Besides a focus on the encountered 
challenges, the time on task as well as the solution 
quality were taken into consideration, as well. 

From the identification of the challenges in relation to 
the task setting, it can be seen that most are 
predominantly observed in one or two task settings. For 
the real object settings, the main focus can be seen in 
inaccurate estimations and measurements (cf. Gurjanow 
& Ludwig, 2020). In line with the findings of Buchholtz 
(2021), this setting poses special demands in terms of 
data collection. The other settings involve these 
challenges, too, but were observed in fewer cases. For the 
work with photos, the challenges can be seen in 

Table 4. Overview of Kendall’s tau correlations 

Variable  
Challenges 

(total) 
Challenges (data 

collection) 
Challenges 
(planning) 

Time on task Solution quality 

Challenges 
(total) 

Kendall’s tau -     

p-value -     
Challenges 
(data collection) 

Kendall’s tau 0.754*** -    

p-value <.001 -    
Challenges 
(planning) 

Kendall’s tau 0.763*** 0.348 -   

p-value <.001 0.103 -   
Time on task Kendall’s tau 0.546** 0.335 0.670*** -  

p-value 0.003 0.080 <.001 -  
Solution quality Kendall’s tau 0.267 0.254 0.318 0.257 - 

p-value 0.162 0.199 0.109 0.152 - 
Note. *p<.050; **p<.010; & ***p<.001 
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identifying important and unimportant data as well as 
recognizing perspective. Having a two-dimensional 
representation of a 3D object seems to be a challenge for 
students in terms of object-related planning. The results, 
especially in terms of the problems identifying the 
perspective are in line with the findings of Schukajlow 
(2013). Being relevant in both the photo and 3D model 
setting, problems in scale calculation and the use of the 
reference figure are observed. In addition, working with 
a 3D model, the students show problems in the 
understanding of the link between representation and 
the real object, which is not the case in the other settings. 
Even though a 3D representation is given here, the link 
between the scaled representation and reality places 
special demands. Potentially, the work with 3D models 
is less common to the students since photos and real 
objects are part of their everyday life. In contrast, 
students do not face problems in finding a unified 
strategy for structuring in this setting, which is 
encountered in the real object and 3D model setting, both 
potentially enabling more possibilities to solve the task. 
The observations can enrich the previous observations 
concerning the different settings in Jablonski (2023): 
Besides different emphases of the settings in terms of 
activities, different challenges related to these activities 
can (partly) be observed in the settings.  

From the correlations, in addition, it can be seen that 
the time on task and the encountered challenges are 
related to each other with a medium effect using 
Kendall’s tau τ. Still, the data do not allow for reporting 
any remarkable differences concerning the total number 
of challenges and the time on task between the settings. 
Moreover, no remarkable relation between the 
challenges linked to contextualized mathematization 
and the solution quality could be found. Potentially, 
challenges in other modelling steps might have a higher 
influence on the results’ quality. 

From the results, particular demands of the settings 
derive:  

(1) measuring and estimating when working at the 
real object,  

(2) perspective and scale when working with photos, 
and  

(3) scale as well as the transfer of representation and 
reality when working with a 3D model.  

Consequently, different kinds of preparations and 
hints can become relevant for the use of different settings 
in mathematics education. For the real object setting, it 
would be beneficial to strengthen measuring skills in 
advance (cf. Gurjanow & Ludwig, 2020), whereas the 
photos and 3D model setting could be supported 
through hints concerning perspective for the first and 
scale for the latter. To assist in the 3D model setting, it 
would make sense to let students experience the process 
of creating a 3D model in order to understand the link 
between the representation and the original object. 

The limits of these results are the potential positive 
selection of mathematically gifted and interested 
students as well as the given tasks. For the first, it might 
be the case that the students had less difficulties because 
of their special relation to mathematics. Other students 
might have shown additional problems in solving the 
tasks. Still, it can be assumed that the identified 
challenges are also relevant for other students. As these 
results were still obtained with the same sample as in 
Jablonski (2023), they should only be interpreted as a 
supplement to the observational perspective and not as 
a validating study. Accordingly, confirmatory studies 
based on the data, which focus on larger samples, are 
still pending. Furthermore, the role of the identified 
challenges in modelling tasks from other topics, e.g., 
discrete mathematics and algebra, would be of high 
interest. Through the exclusive observation of geometry-
specific tasks in this study, the kind of challenges, e.g., 
problems with measurements, perspective, and scaling, 
was influenced. Thus, future research could extend the 
findings in following the question of the results’ 
transferability. 
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